Растворы электролитов

При растворении в воде не все вещества имеют способность проводить электрический ток. Те соединения, водные растворы которых способны проводить электрический ток называются электролитами. Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания). Существуют вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) – это слабые электролиты. Многие органические соединения (углеводы, спирты), растворенные  воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить к сильным или слабым электролитам относится то или иное соединение:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Почти все остальные кислоты – слабые электролиты.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be). Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений, — электролиты сильные. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа. Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Теория выдвигает следующие постулаты:

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Разные электролиты имеют различную степень диссоциации, которая зависит не только от природы самого электролита, но природы растворителя, а также концентрации электролита и температуры.

Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:

α = n/N

При отсутствии диссоциации α = 0, при полной диссоциации электролита α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на сильные (α > 0,7), средней силы ( 0,3 > α > 0,7), слабые  (α < 0,3 ).

Более точно процесс диссоциации электролита характеризует константа диссоциации, не зависящая от концентрации раствора. Если представить процесс диссоциации электролита в общем виде:

Aa Bb ↔ aA + bB+

K = [A]a·[B+]b/[Aa Bb]

Для слабых электролитов концентрация каждого иона равна произведению α на общую концентрацию электролита С таким образом, выражение для константы диссоциации можно преобразовать:

K = α2C/(1-α)

Для разбавленных растворов (1-α) =1, тогда

K = α2C

Отсюда нетрудно найти степень диссоциации

α = (K/C)1/2

Ионно–молекулярные уравнения

Рассмотрим пример нейтрализации сильной кислоты сильным основанием, например:

HCl + NaOH = NaCl + HOH

Процесс представлен в виде молекулярного уравнения. Известно, что как исходные вещества, так и продукты реакции в растворе полностью ионизированы. Поэтому представим процесс в виде полного ионного уравнения:

H+ + Cl +Na+ + OH = Na+ + Cl + HOH

После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

H+ + OH = HOH

Мы видим, что процесс нейтрализации сводится к соединению H+ и OH и образованию воды.

При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

Далее рассмотрим реакцию осаждения. Смешаем водные растворы AgNO3 и HI:

Молекулярное уравнениеAgNO3 + HI →AgI↓ + HNO3
Полное ионное уравнениеAg+ + NO3 + H+ + I →AgI↓ + H+ + NO3
Сокращенное ионное уравнениеAg+ + I →AgI↓

Процесс осаждения сводится к взаимодействию только Ag+ и I и образованию нерастворимого в воде AgI.

Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей нерастворимости.

аблица нерастворимости

Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

Молекулярное уравнениеNa2SO3 + 2HI → 2NaI + SO2↑ + H2O
Полное ионное уравнение2Na+ + SO32- + 2H+ + 2I → 2Na+ + 2I + SO2↑ + H2O
Сокращенное ионное уравнениеSO32- + 2H+ → SO2↑ + H2O

 

При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

Молекулярное уравнениеCaCl2 + 2NaI  = 2NaCl +CaI2
Полное ионное уравнениеCa2+ + Cl + 2Na+ + I  = 2Na+ + Cl + Ca2++ 2I
Сокращенное ионное уравнениеотсутствует

 

Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

  • Образование неэлектролита. В качестве неэлектролита может выступать вода.
  • Образование осадка.
  • Выделение газа.
  • Образование слабого электролита, например уксусной кислоты.
  • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
  • Образование или разрыв одной или нескольких ковалентных связей.