Строение коллоидных частиц

Коллоидная частица не имеет определенного состава, поэтому ее строение может быть изображено лишь схематически.

Рассмотрим образование золя и строение его частиц на примере иодида свинца PbI2.
Уравнение реакции имеет вид:

Pb2+ + 2I = PbI2


Образование золя возможно, если к раствору Pb(NO3)2 постепенно прибавлять раствор KI или если к раствору KI постепенно прибавлять раствор Pb(NO3)2. При этом строение коллоидных частиц будет отличаться.

1. Предположим, что золь PbI2 образуется при постепенном прибавлении раствора KI к раствору Pb(NO3)2.

Вначале образуется агрегат (PbI2)m из ионов Pb2+ и I.

Далее на поверхности агрегата адсорбируются ионы, входящие в его состав и находящиеся в растворе в избытке. В нашем примере это ионы свинца.

В результате этого, агрегат (PbI2)m с адсорбированным слоем Pb2+ приобретает положительный заряд. Адсорбированные на поверхности агрегата ионы и придающие ему заряд, называются потенциалопределяющими. А сам агрегат (PbI2)m с потенциалопределяющими ионами Pb2+, образуют ядро.

Далее, к ядру притягиваются противоположно заряженные ионы – противоионы, которые компенсируют заряд твердой фазы и образуют адсорбционный слой. Противоионами будут служить, ионы содержащиеся в растворе, но не входящие в состав агрегата. В данном примере – это нитрат-ионы NO3–.

Ядро и противоионы адсорбционного слоя образуют коллоидную частицу или гранулу, знак которой определяется знаком заряда потенциалопределяющих ионов.
Те же противоионы (NO3–), образуют и диффузный слой. По мере удаления от ядра, их содержание постепенно снижается.

Коллоидная частица вместе с противоионами диффузного слоя называется мицеллой.

Мицела в целом электронейтральна и не имеет строго определенных размеров.
Агрегат сравнительно прочно удерживает (связывает) противоионы адсорбционного слоя, а противоионы диффузного слоя испытывают действие электростатического притяжения разноименно заряженных ионов, удерживающее их вблизи ядра, и броуновского движения, стремящегося распределить их в дисперсионной среде.

Формула мицеллы йодида свинца выглядит следующим образом:
строение мицелы

строение мицелы

 

2. Если же постепенно прибавлять раствор Pb(NO3)2 к раствору KI, то строение мицелы будет иным.

В этом случае, в избытке будут йодид-ионы, которые и будут адсорбироваться на поверхности агрегата (PbI2)m, образуя слой потенциалопределяющих ионов. В качестве противоионов адсорбционного и диффузионного слоев будут выступать ионы калия. Строение мицеллы имеет следующий вид:

[(PbI2)m, nI–, (n – x)K+]x–xK+.

Т.к. гранула мицелы и ее диффузный слой – это заряженные частицы, то под действием электрического поля, они будут перемещаться к соответствующим электродам.
Итак, обобщая вышесказанное, приведем порядок написания формулы мицелы:
1) Ядро мицелы. Малорастворимое соединение, образуемое в результате реакции, составляет агрегат. Агрегат записывают в круглых скобках с индексом m.

2) Потенциалопределяющие ионы. Ионы, адсорбированные на поверхности агрегата и входящие в его состав, а также придающие ему заряд, находятся в растворе в избытке. Перед потенциалопределяющим ионом ставят коэффициент n.

3) Противоионы адсорбционного слоя. Ионы раствора, взятого в избытке, но не входящие в состав агрегата образуют адсорбционный слой и компенсируют заряд твердой фазы. Перед противоионом адсорбционного слоя ставят коэффициент (n-x), умноженный на численное значение заряда потенциалопределяющего иона.
Ядро и адсорбционный слой мицелы, образующие гранулу, заключают в квадратные скобки и указывают заряд гранулы — x+ или x-, умноженные на численное значение заряда потенциалопределяющего иона.

4) Противоионы диффузного слоя. Часть противоионов, находящиеся во внешней сфере мицелы, удаленной от ее ядра. Перед противоионом диффузного слоя ставят коэффициент x, умноженный на численное значение заряда потенциалопределяющего иона. Противоионы диффузного слоя записывают за квадратными скобками.