Третий закон термодинамики

...

Третий закон термодинамики. Изменение энтропии в химических реакциях

Третий закон термодинамики связан с мерой беспорядочности системы — энтропией.

Рассмотрим подробнее изменение этого параметра в процессе химической реакции.

Довольно часто мы имеем дело с процессами, протекающими при постоянных давлении и температуре. Это, например, фазовые превращения (ΔSф.п) и химические реакции (ΔSр-ции).

При химических реакциях изменение энтропии можно определить следующим образом:

ΔSр-цииSкон – ΣSисх

Если в ходе реакции происходит изменение объема системы, то можно судить и об изменении энтропии, например,

если ΔVр-ции>0, то  ΔSр-ции>0

если ΔVр-ции<0, то  ΔSр-ции<0

если ΔVр-ции=0, то  ΔSр-ции=0

Для примера, рассмотрим реакцию:

3H2(г) + N2(г) = 2NH3(г)

В данной реакции, слева 4 объема вещества, а справа – 2 объема, следовательно объем вещества уменьшается, а значит уменьшается и беспорядочность системы (энтропия). Т.е. ΔVр-ции<0, ΔSр-ции<0.

Для реакций, протекающих без изменения объема, можно принять, что ΔS0298 ≈ 0. Это реакции между твердыми и жидкими веществами, а также между газообразными веществами, идущими без изменения числа молей, например:

C(графит) + O2(г) = CO2(г)

Т.о., третий закон (начало) термодинамики или теорема Нернста можно сформулировать так:

Энтропия любой системы, находящейся в равновесном состоянии при стремлении температуры к абсолютному нулю начинает стремится к определённому пределу и перестает зависеть от любых параметров состояния.

Нулевая энтропия, при абсолютном нуле, называется абсолютной энтропией, значения которой дает возможность найти теорема Нернста. На самом деле, в теореме можно выделить два основных пункта:

  • При стремлении к абсолютному нулю существует предел энтропии, значение которого приравнивают к нулю.
  • Вблизи абсолютного нуля, любые процессы, сопровождающиеся переходом системы из одного равновесного состояния в другое, протекают без изменения энтропии.

Энергия Гиббса (функция свободной энергии). Энергия Гельмгольца

Чтобы дать ответ на вопрос о возможности протекания той или иной реакции, о ее направлении и глубине необходимо снова воспользоваться вторым законом термодинамики, который может быть сформулирован следующим образом: любой самопроизвольно протекающий процесс, а также и химическая реакция, идет в том направлении, которое сопровождается уменьшением свободной энергии в системе (при постоянных температуре и давлении) или энергии Гельмгольца (при постоянных температуре и объеме).

Свободная энергия или Энергия Гиббса – это та часть всей энергии системы, которую можно использовать для совершения максимальной работы.

Энергия Гельмгольца A — это та часть внутренней энергии системы, также определяющая работоспособность и может быть применена для совершения максимальной работы.

При протекании химических реакций единовременно совершаются два направления:

  • стремление простых частиц объединиться в более сложные,
  • стремление сложных частиц к распаду на более простые.

Они не зависят друг от друга и их величины противоположны, и процесс идет в сторону той реакции, при которой изменение величины больше.

Разность между этими величинами определяет свободную энергию реакции (при постоянных температуре и давлении). Ее изменение в реакции определяется разностью сумм энергий Гиббса конечных продуктов реакции и исходных веществ:

ΔG= Gкон Gисх

При постоянных температуре и давлении изменение энергии Гиббса связано с энтальпией и энтропией следующим выражением:

ΔG = ΔH– TΔS

Здесь изменение энергии Гиббса учитывает одновременно изменение энергетического запаса системы и степень ее беспорядка (самопроизвольность протекания процесса).

Т.к. энергия Гиббса является мерой самопроизвольности протекания процесса, то между знаком ΔG для любой реакции и ее самопроизвольным протеканием (при постоянных температуре и давлении) существуют такие зависимости:

  1. Если ΔG отрицательно (ΔG<0), то реакция протекает самопроизвольно в прямом направлении.
  2. Если ΔG равно нулю (ΔG=0), то реакция находится в равновесном состоянии.
  3. Если ΔG положительно (ΔG>0), то реакция протекать самопроизвольно в прямом направлении не может. Однако обратная реакция идет самопроизвольно.

Энтальпийный и энтропийный факторы и направление процесса

Выясним, как функция свободной энергии зависит от изменений энтропии и энтальпии идущего процесса. Вернемся к выражению, связывающему энергию Гиббса с энтальпией и энтропией:

ΔG= ΔHTΔS

Без энтропийных факторов все экзотермические реакции (ΔH˂0) должны были быть самопроизвольными. Но энтропийный фактор, который определяется величиной TΔS, может привести к росту или, наоборот, к падению способности самопроизвольного протекания.

Так, при ΔS>0, член TΔS вносит отрицательный вклад в общую величину ΔG, следовательно он повышает возможность реакции протекать самопроизвольно.

А при при ΔS˂0, членTΔS напротив уменьшает возможность реакции протекать самопроизвольно.

Если ΔH и – TΔS имеют противоположные знаки, то от их величины зависит будет ли ΔG отрицательным или положительным. В таком случае, необходимо учитывать температурный фактор. Т.о. при высоких температурах роль энтропийного фактора становится значительным.

Далее приведена таблица, наглядно показывающая влияние температуры на самопроизвольное протекание реакции.

ΔH

ΔSΔG

Протекание реакции

 ˂0 >0 Всегда ˂0 Реакция самопроизвольна при любых температурах, обратная реакция всегда несамопроизвольна
 >0 ˂0 Всегда >0 Реакция несамопроизвольна при любых температурах, обратная реакция самопроизвольна
 ˂0 ˂0 При низких  температурах ˂0,  при высоких температурах >0 Реакция самопроизвольна при низких температурах, обратная реакция становится самопроизвольной при высоких температурах
 >0 >0 При низких температурах >0,  при высоких температурах ˂0 Реакция несамопроизвольна при низких температурах, но при высоких температурах становится самопроизвольной

Изменение энергии Гиббса. Для удобства принято сравнивать значения ΔG при стандартных условиях – концентрации равны 1 моль/л, парциальное давление газообразных веществ равно 101,3 кПа, температура 298,15 К. Тогда свободную энергию обозначают через ΔG0, на основе значений которой можно вычислить изменение энергии Гиббса химической реакции:

ΔG0р-ции = Σ ΔG0прод — Σ ΔG0исх

Величина ΔG0р-ции позволяет определить, будет ли данная реакция, находящаяся в стандартных условиях, протекать самопроизвольно в прямом или обратном направлении. Аналогично теплоте образования, энергии Гиббса образования простых веществ равны нулю.

Энергия Гельмгольца системы с определенной внутренней энергией (U), энтропией (S) при абсолютной температуре (Т) определяется уравнением:

A = UTS

Изменение энергии Гельмгольца для процессов (при постоянных температуре и объеме) можно определить соотношением:

ΔA= ΔUTΔS

ΔA — величина, которая не зависит от пути, а зависит только от исходного и конечного состояния системы, т.е. ΔA также, как и другие рассмотренные термодинамические величины, является функцией состояния.

Энергия Гельмгольца подобно энергии Гиббса связана с самопроизвольностью протекания процесса. Если допустить, что система изолирована, а объем и температура постоянны, то самопроизвольно будут протекать только те процессы, при которых А уменьшается.

Таким образом,

  • при ΔA˂0 процесс идет самопроизвольно в прямом направлении,
  • при ΔA>0 – в обратном направлении,
  • а при ΔA=0 система находится в состоянии равновесия.

Энергию Гельмгольца и энергию Гиббса в стандартных состояниях можно связать с константой равновесия:

ΔG0Т = ΔH0ТTΔS0Т = —RTlnK,

Где R– универсальная газовая постоянная, K – константа равновесия, Т – абсолютная температура.

Если K>>1, т.е. реакция идет в прямом направлении, то ΔG0˂˂0.

Если K˂˂1, т.е. реакция идет в обратном направлении, то ΔG0>>0

Если K=1, то ΔG0=0

В случае химической реакции, протекающей в гальваническом элементе при стандартных условиях ΔG0 можно связать с ЭДС гальванического элемента следующим соотношением:

ΔG0=-nFE0, где

nF – количество прошедшего электричества

E0 – электродвижущая сила, при условии что все вещества, принимающие участие в реакции, находятся в стандартном состоянии.

При самопроизвольном протекании процесса, его ΔG˂0, а ЭДС>0.

Порог реакционной способности веществ для большинства реакций имеет значение ΔG0≈41 кДж/моль.

То есть, если ΔG0˂-41 кДж/моль, то процесс осуществим,

если ΔG0>+41 кДж/моль, то процесс неосуществим в любых реальных и стандартных условиях.