Метод молекулярных орбиталей

...

Мы уже знаем, что в атомах электроны находятся на разрешенных энергетических состояниях – атомных орбиталях (АО). Аналогичным образом, электроны в молекулах  существуют в разрешенных энергетических состояниях – молекулярных орбиталях (МО).

Молекулярная орбиталь


Молекулярная орбиталь устроена намного сложнее атомной орбитали. Приведем несколько правил, которыми мы будем руководствоваться при построении МО из АО:

  • При составлении МО из набора атомных орбиталей, получается такое же число МО, сколько АО в данном наборе.
  • Средняя энергия МО, полученных из нескольких АО, примерно равна (но может быть больше или меньшее) средней энергии взятых АО.
  • МО подчиняются принципу запрета Паули: на каждой МО не может находиться более двух электронов, которые должны иметь противоположные спины.
  • АО, которые обладают сопоставимой энергией, комбинируются наиболее эффективно.
  • Эффективность, с которой комбинируют две атомные орбитали, пропорциональна их перекрыванию друг с другом.
  • При образовании МО при перекрывании двух неэквивалентных АО связывающая МО содержит больший вклад АО с наиболее низкой энергией, а разрыхляющая орбиталь – вклад АО с более высокой энергией.

Введем понятие порядок связи. В двухатомных молекулах, порядок связи показывает насколько число связывающих электронных пар превышает число разрыхляющих электронных пар:

порядок связи формула

Теперь на примерах рассмотрим как строить молекулярные орбитали с применением этих правил.

Молекулярно-орбитальные диаграммы элементов первого периода

Диаграмма МО молекулы Н2

Пример образования молекулы водорода из двух атомов водорода.

В результате взаимодействия 1s-орбиталей каждого из атомов водорода, образуются две молекулярные орбитали.

При взаимодействии, когда электронная плотность концентрируется в пространстве между ядрами, образуется связывающая сигма – орбиталь (σ). Эта комбинация имеет более низкую энергию, чем исходные атомы. При взаимодействии, когда электронная плотность концентрируется за пределами межъядерной области, образуется разрыхляющая сигма – орбиталь*). Эта комбинация имеет более высокую энергию, чем исходные атомы.

молекулярные орбитали молекул водорода и гелия
диаграммы МО молекул водорода и гелия

Электроны, в соответствии с принципом Паули, занимают сначала орбиталь с самой низкой энергией σ-орбиталь.

Диаграмма МО молекулы Не2

Теперь рассмотрим пример образования молекулы гелия He2, при сближении двух атомов гелия. В этом случае тоже происходит взаимодействие 1s-орбиталей и образование и σ*-орбиталей, при этом два электрона занимают связывающую орбиталь, а другие два электрона – разрыхляющую.

σ *— орбиталь дестабилизирована в такой же мере, насколько стабилизирована σ –орбиталь, поэтому два электрона, занимающие σ*— орбиталь, дестабилизируют молекулу He2. Действительно, экспериментально доказано, что молекула He2 очень неустойчива.

Как узнать несколько велика прочность молекулы? Чем больше разница в заполненности связывающей и разрыхляющей орбиталей, тем молекула более прочная. Как видно из диаграммы разница в заполненности орбиталей молекулы водорода больше, чем молекулы гелия, поэтому молекула водорода намного более прочная, чем молекула гелия.

Молекулярно-орбитальные диаграммы элементов второго периода

Рассмотрим, как взаимодействуют два одинаковых атома второго периода между собой, имеющие набор из s- и p-орбиталей. Следует ожидать, что 2s-орбитали будут соединяться только друг с другом, а 2p-орбитали – только с а 2p-орбиталями.

Т.к. 2p-орбитали могут взаимодействовать друг с другом двумя различными способами, то образуют σ- и π-молекулярные орбитали. Пользуясь обобщенной диаграммой, показанной ниже, можно установить электронные конфигурации двухатомных молекул второго периода, которые приведены в таблице.

Так, образование молекулы, например, фтора F2 из атомов в системе обозначений теории молекулярных орбиталей может быть записано следующим образом:

2F [1s22s22p5] =F2[(σ1s)2*1s)22s)2*2s)22px)22py)22pz)2*2py)2*2pz)2].

Т.к. перекрывание 1s-облаков незначительно, то участием электронов на этих орбиталях можно пренебречь. Тогда электронная конфигурация молекулы фтора будет такой:

F2[KK(σs)2*s)2x)2y)2z)2*y)2*z)2],

где К — электронная конфигурация К-слоя.

В таблице приведены молекулярные орбитали двухатомных молекул элементов второго периода бора (B2), углерода (C2), азота (N2), кислорода (O2), фтора (F2)

МО-молекул-элементов-второго-периода

Рассмотрим подробнее пример образования молекулы лития Li2, принимая во внимание, что 1s- и 2s-орбитали слишком сильно отличаются по энергии и поэтому между ними не возникает сильного взаимодействия.

Диаграмма энергетических уровней молекулы Li2 показана ниже, где электроны, находящиеся на 1s-связывающих и 1s-разрыхляющих орбиталях не вносят значительного вклада в связывание. Поэтому за образование химической связи в молекуле Li2 отвечают 2s-электроны.

молекулярная орбиталь молекулы лития
диаграмма МО молекулы лития

Это действие распространяется и на образование других молекул, в которых заполненные атомные подоболочки (s, p, d) не дают вклада в химическую связь. Таким образом, рассматриваются только валентные электроны.

В итоге, для щелочных металлов, молекулярно-орбитальная диаграмма будет иметь вид подобный рассмотренной нами диаграмме молекулы Li2.

Порядок связи в молекуле Li2 равен 1

Молекулярные орбитали полярных двухатомных молекул

Учение о МО позволяет объяснить и образование двухатомных гетероядерных молекул. Если атомы в молекуле не слишком отличаются друг от друга (например, NO, CO, CN), то можно воспользоваться диаграммой, приведенной выше для элементов 2 периода.

При значительных различиях между атомами, входящих в состав молекулы, диаграмма видоизменяется.

Чем больше электроотрицательность атома, тем более низко на диаграмме обозначают атомные орбитали.

Диаграмма МО молекулы HF

Рассмотрим молекулу HF, в которой атомы сильно отличаются по электроотрицательности.

Энергия 1s-орбитали атома водорода выше энергии самой высокой из валентных орбиталей фтора – 2p — орбитали. Взаимодействие 1s-орбитали атома водорода и 2p — орбитали фтора приводит к образованию связывающей и разрыхляющей орбиталей, как показано на рисунке. Пара электронов, находящиеся на связывающей орбитали молекулы HF, образуют полярную ковалентную связь.

Для связывающей орбитали молекулы HF 2p — орбиталь атома  фтора играет более важную роль, чем 1s — орбиталь атома водорода.

Для разрыхляющей орбитали молекулы HF наоборот: 1s — орбиталь атома водорода играет более важную роль, чем 2p — орбиталь атома  фтора

Диаграмма МО молекулы HF
Диаграмма МО молекулы HF

Т.к. электроотрицательность фтора больше, чем электроотрицательность водорода, то на диаграмме, атомные орбитали фтора расположени ниже, чем атомная орбиталь водорода.

Определим порядок связи, т.е. кратность связи:

порядок связи молекулы HF

Т.о. в молекуле H-F связь одинарная.

Диаграмма МО молекулы СО

Электронная конфигурация внешнего слоя атомов углерода и кислорода:

С+6 1s2 2s2 2p2

O+8 1s2 2s2 2p4

Кислород более электроотрицательный элемент, поэтому его атомная орбиталь на диаграмме расположена ниже орбитали углерода.

Диаграмма МО молекулы СО имеет вид:

Диаграмма МО молекулы СО

СO[KK(σs)2*s)2x)2y)2z)2*y)]

Кратность связи равна:

n=(8-2)/2 = 3

Диаграмма молекулы NO приведена в разделе Задачи к разделу Химическая связь и строение молекул